In some cases, manufacturers are producing HEVs that use the added energy provided by the hybrid systems to give vehicles a power boost, rather than significantly improved fuel efficiency compared to their traditional counterparts. The trade-off between added performance and improved fuel efficiency is partly controlled by the software within the hybrid system and partly the result of the engine, battery and motor size. In the future, manufacturers may provide HEV owners with the ability to partially control this balance (fuel efficiency vs. added performance) as they wish, through a user-controlled setting. Toyota announced in January, 2006 that it was considering a "high-efficiency" button.
Conversion Kits
One can buy a stock hybrid or convert a stock petroleum car to a hybrid electric vehicle using an aftermarket hybrid kits.
Monday, December 29, 2008
Design Considerations
Posted by Ivak at 9:28 AM 0 comments
Design Considerations
In some cases, manufacturers are producing HEVs that use the added energy provided by the hybrid systems to give vehicles a power boost, rather than significantly improved fuel efficiency compared to their traditional counterparts. The trade-off between added performance and improved fuel efficiency is partly controlled by the software within the hybrid system and partly the result of the engine, battery and motor size. In the future, manufacturers may provide HEV owners with the ability to partially control this balance (fuel efficiency vs. added performance) as they wish, through a user-controlled setting. Toyota announced in January, 2006 that it was considering a "high-efficiency" button.
Conversion Kits
One can buy a stock hybrid or convert a stock petroleum car to a hybrid electric vehicle using an aftermarket hybrid kit .
Posted by Ivak at 4:41 AM 0 comments
Wednesday, December 24, 2008
Engines and Fuel Sources
Gasoline
Gasoline engines are used in most hybrid electric designs, and will likely remain dominant for the foreseeable future. While petroleum-derived gasoline is the primary fuel, it is possible to mix in varying levels of ethanol created from renewable energy sources. Like most modern ICE-powered vehicles, HEVs can typically use up to about 15% bioethanol. Manufacturers may move to flexible fuel engines, which would increase allowable ratios, but no plans are in place at present.
Diesel
Diesel-electric HEVs use a diesel engine for power generation. Diesels have advantages when delivering constant power for long periods of time, suffering less wear while operating at higher efficiency. The diesel engine's high torque, combined with hybrid technology, may offer substantially improved mileage. Most diesel vehicles can use 100% pure biofuels (biodiesel), so they can use but do not need petroleum at all for fuel (although mixes of biofuel and petroleum are more common, and petroleum may be needed for lubrication). If diesel-electric HEVs were in use, this benefit would likely also apply. Diesel-electric hybrid drivetrains have begun to appear in commercial vehicles (particularly buses); as of 2007, no light duty diesel-electric hybrid passenger cars are currently available, although prototypes exist. Peugeot is expected to produce a diesel-electric hybrid version of its 308 in late 2008 for the European market.
PSA Peugeot Citroën has unveiled two demonstrator vehicles featuring a diesel-electric hybrid drivetrain: the Peugeot 307, Citroën C4 Hybride HDi and Citroën C-Cactus.[23] Volkswagen made a prototype diesel-electric hybrid car that achieved 2 L/100 km (140 mpg-imp/120 mpg-US) fuel economy, but has yet to sell a hybrid vehicle. General Motors has been testing the Opel Astra Diesel Hybrid. There have been no concrete dates suggested for these vehicles, but press statements have suggested production vehicles would not appear before 2009.
Robert Bosch GmbH is supplying hybrid diesel-electric technology to diverse automakers and models, including the Peugeot 308.
So far, production diesel-electric engines have mostly just appeared in mass transit buses.
FedEx, along with Eaton Corp. in the USA and Iveco in Europe, has begun deploying a small fleet of Hybrid diesel electric delivery trucks.[25] As of October 2007 Fedex now operates more than 100 diesel electric hybrids in North America, Asia and Europe.
Posted by Ivak at 9:48 PM 0 comments
Sunday, December 21, 2008
Technology
The varieties of hybrid electric designs can be differentiated by the structure of the hybrid vehicle drivetrain, the fuel type, and the mode of operation.
In 2007, several automobile manufacturers announced that future vehicles will use aspects of hybrid electric technology to reduce fuel consumption without the use of the hybrid drivetrain. Regenerative braking can be used to recapture energy and stored to power electrical accessories, such as air conditioning. Shutting down the engine at idle can also be used to reduce fuel consumption and reduce emissions without the addition of a hybrid drivetrain. In both cases, some of the advantages of hybrid electric technology are gained while additional cost and weight may be limited to the addition of larger batteries and starter motors. There is no standard terminology for such vehicles, although they may be termed mild hybrids.
The 2000s saw development of plug-in hybrid electric vehicles (PHEVs), which can be recharged from the electrical power grid and do not require conventional fuel for short trips. The Renault Kangoo was the first production model of this design, released in France in 2003.
Posted by Ivak at 9:32 AM 0 comments
Saturday, December 20, 2008
What's the Hybrid Electric Vehicle
A hybrid electric vehicle is a vehicle which combines a conventional propulsion system with an on-board rechargeable energy storage system (RESS) to achieve better fuel economy than a conventional vehicle without being hampered by range from a charging unit like a battery electric vehicle (BEV), which uses batteries charged by an external source. The different propulsion power systems may have common subsystems or components.
Regular HEVs most commonly use an internal combustion engine (ICE) in tandem with electric motors to power their propulsion system. Modern mass-produced HEVs prolong the charge on their batteries by capturing kinetic energy via regenerative braking, and some HEVs can use the combustion engine to generate electricity by spinning an electrical generator (often a motor-generator) to either recharge the battery or directly feed power to an electric motor that drives the vehicle. Many HEVs reduce idle emissions by shutting down the ICE at idle and restarting it when needed. An HEV's engine is smaller and may be run at various speeds, providing more efficiency.
Posted by Ivak at 1:06 AM 0 comments
Vehicle Type
Two-wheeled and cycle-type vehicles
Mopeds and electric bicycles are a simple form of a hybrid, as power is delivered both via an internal combustion engine or electric motor and the rider's muscles. Early prototypes of motorcycles in the late 1800s used the same principles.
* In a parallel hybrid bicycle human and motor power are mechanically coupled at the pedal drive train or at the rear or the front wheel, e.g. using a hub motor, a roller pressing onto a tire, or a connection to a wheel using a transmission element. Human and motor torques are added together. Almost all manufactured models are of this type. See Motorized bicycles, Mopeds and[2] for more information.
* In a series hybrid bicycle (SH) the user powers a generator using the pedals. This is converted into electricity and can be fed directly to the motor giving a chainless bicycle but also to charge a battery. The motor draws power from the battery and must be able to deliver the full mechanical torque required because none is available from the pedals. SH bicycles are commercially available, because they are very simple in theory and manufacturing.
The first known prototype and publication of an SH bicycle is by Augustus Kinzel (US Patent 3'884'317) in 1975. In 1994 Bernie Macdonalds conceived the Electrilite SH lightweight vehicle which used power electronics allowing regenerative braking and pedaling while stationary. In 1995 Thomas Müller designed a "Fahrrad mit elektromagnetischem Antrieb" in his 1995 diploma thesis and built a functional vehicle. In 1996 Jürg Blatter and Andreas Fuchs of Berne University of Applied Sciences built an SH bicycle and in 1998 mounted the system onto a Leitra tricycle (European patent EP 1165188). In 1999 Harald Kutzke described his concept of the "active bicycle": the aim is to approach the ideal bicycle weighing nothing and having no drag by electronic compensation. Until 2005 Fuchs and colleagues built several prototype SH tricycles and quadricycles.
Heavy vehicles
Hybrid power trains are used for diesel-electric or turbo-electric railway locomotives, buses, heavy goods vehicles, mobile hydraulic machinery, and ships. Typically some form of heat engine (usually diesel) drives an electric generator or hydraulic pump which powers one or more electric or hydraulic motors. There are advantages in distributing power through wires or pipes rather than mechanical elements especially when multiple drives — e.g. driven wheels or propellers — are required. There is power lost in the double conversion from typically diesel fuel to electricity to power an electric or hydraulic motor. With large vehicles the advantages often outweigh the disadvantages especially as the conversion losses typically decrease with size. With the exception of non nuclear submarines, presently there is no or relatively little energy storage capacity on most heavy vehicles, e.g. auxiliary batteries and hydraulic accumulators—this is changing.
Rail transport
Example of a typical "hybrid" is the new Canadian, Bombardier-built railroad engine called the AGC (Autorail à grande capacité, high-capacity railcar) which has dual mode (diesel and electric motors) and dual voltage capabilities (1500 and 25000 V) allowing it to be used on many different rail systems.The first operational prototype of a hybrid train engine with significant energy storage and energy regeneration capability has been introduced in Japan as the Kiha E200. It utilizes battery packs of lithium ion batteries mounted on the roof to store recovered energy.In the U.S., General Electric introduced a prototype railroad engine with their "Ecomagination" technology in 2007. They store energy in a large set of sodium nickel chloride (Na-NiCl2) batteries to capture and store energy normally dissipated during dynamic braking or coasting downhill. They expect at least a 10% reduction in fuel use with this system and are now spending about $2 billion/yr on hybrid research.[5] Variants of typical diesel-electrical locomotives are like the Green Goat (GG) and Green Kid (GK) switching/yard engines built by Canada's Railpower Technologies. They utilize a large set of heavy duty long life (~10 yr) rechargeable lead acid (Pba) batteries and 1000 to 2000 HP electric motors as the primary motive sources and a new clean burning diesel generator (~160 Hp) for recharging the batteries that is used only as needed. No power or fuel are wasted for idling—typically 60–85% of the time for these type locomotives. Its unclear if dynamic braking (regenerative) power is recaptured for reuse; but in principle should be easily utilized. Since these engines typical need extra weight for traction purposes anyway the battery pack's weight is a negligible penalty. In addition the diesel generator and battery package are normally built on an existing "retired" "yard" locomotive's frame for significant additional cost savings. The existing motors and running gear are all rebuilt and reused. Diesel fuel savings of 40–60% and up to 80% pollution reductions are claimed over that of a "typical" older switching/yard engine. The same advantages that existing hybrid cars have for use with frequent starts and stops and idle periods apply to typical switching yard use."Green Goats" locomotives have been purchased by Canadian Pacific Railway, BNSF Railway, Kansas City Southern Railway and Union Pacific Railroad among others.
Railpower Technologies Corp. engineers working with TSI Terminal Systems Inc. in Vancouver, British Columbia are testing a hybrid diesel electric power unit with battery storage for use in Rubber Tyred Gantry (RTG) cranes. RTG cranes are typically used for loading and unloading shipping containers onto trains or trucks in ports and container storage yards. The energy used to lift the containers can be partially regained when they are lowered. Diesel fuel and emission reductions of 50–70% are predicted by Railpower engineers.First systems are expected to be operational in 2007.
Road Transport, Commercial Vehicles
Early hybrid systems are being investigated for trucks and other heavy highway vehicles with some operational trucks and buses starting to come into use. The main obstacles seem to be smaller fleet sizes and the extra costs of a hybrid system are yet compensated for by fuel savings, but with the price of oil set to continue on its upward trend, the tipping point may be reached by the end of 1995. Advances in technology and lowered battery cost and higher capacity etc. developed in the hybrid car industry are already filtering into truck use as Toyota, Ford, GM and others introduce hybrid pickups and SUVs. Kenworth Truck Company recently introduced a hybrid-electric truck, called the Kenworth T270 Class 6 that for city usage seems to be competitive.FedEx and others are starting to invest in hybrid delivery type vehicles—particularly for city use where hybrid technology may pay off first.Since 2002, the U.S. military has been testing serial hybrid Humvees and have found them to deliver faster acceleration, a stealth mode with low thermal signature/ near silent operation, and greater fuel economy.
"GM has launched hybrid versions of its full-size GMC Yukon (pictured) and Chevrolet Tahoe SUVs for 2008"
Ships
Ships with both mast-mounted sails and engines were an early form of hybrid vehicles. Newer hybrid ship-propulsion schemes include large towing kites manufactured by companies such as SkySails. Towing kites can fly at heights several times higher than the tallest ship masts, capturing stronger and steadier winds.
Aircraft
Delta Air Lines is going to be turning their Boeing 737NGs into hybrids in early 2010 by mounting the WheelTug ground propulsion system on their fleet of Boeing 737NGs.By using the APU, which is powered by a turbine, to power a Chorus Motor mounted on the landing gear for ground movement, Delta Air Lines will be creating a hybrid configuration by ceasing to use the main engines for anything but flight and take-off.
Posted by Ivak at 1:00 AM 0 comments
History of plug-in Hybrids
In 1901, while employed at Lohner Coach Factory, Ferdinand Porsche designed the "Mixte", a series-hybrid vehicle based on his earlier "System Lohner-Porsche" electric carriage. The Mixte broke several Austrian speed records, and also won the Exelberg Rally in 1901 with Porsche himself driving. The Mixte used a gasoline engine powering a generator, which in turn powered electric hub motors, with a small battery pack for reliability. It had a range of 50 km, a top speed of 50 km/h and a power of 5.22 kW during 20 minutes.
The 1915 Dual Power, made by the Woods Motor Vehicle electric car maker, had a four-cylinder ICE and an electric motor. Below 15 mph (25 km/h) the electric motor alone drove the vehicle, drawing power from a battery pack, and above this speed the "main" engine cut in to take the car up to its 35 mph (55 km/h) top speed. About 600 were made up to 1918.
In 1931 Erich Gaichen invented and drove from Altenburg to Berlin a 1/2 horse power electric car containing features later incorporated into hybrid cars. Its maximum speed was 25 miles per hour, but it was licensed by the Motor Transport Office, taxed by the German Revenue Department and patented by the German Reichs-Patent Amt. The car battery was re-charged by the motor when the car went downhill. Additional power to charge the battery was provided by a cylinder of compressed air which was re-charged by small air pumps activated by vibrations of the chassis and the brakes and by igniting oxyhydrogen gas. An account of the car and his characterization as a"crank inventor" can be found in Arthur Koestler's autobiography, Arrow in the Blue, pages 269-271, which summarize a contemporaneous newspaper account written by Koestler. No production beyond the prototype was reported.
Posted by Ivak at 12:51 AM 0 comments
Hybrid Electric Vehicle
"The Prius is one of Toyota's top sellers in the United States. There are over 1 million worldwide"
A hybrid electric vehicle (HEV) is a hybrid vehicle which combines a conventional propulsion system with a rechargeable energy storage system (RESS) to achieve better fuel economy than a conventional vehicle. It includes a propulsion system additional to the electric motors, to be not hampered by range from a charging unit like a battery electric vehicle (BEV).
Modern mass-produced HEVs prolong the charge on their batteries by capturing kinetic energy via regenerative braking, and some HEVs can use the internal combustion engine (ICE) to generate electricity by spinning an electrical generator (often a motor-generator) to either recharge the battery or directly feed power to an electric motor that drives the vehicle. Many HEVs reduce idle emissions by shutting down the ICE at idle and restarting it when needed (start-stop system). An HEV's engine is smaller than a non-hybrid petroleum fuel vehicle and may be run at various speeds, providing more efficiency.
HEVs became widely available to the public in the late 1990s with the introduction of the Honda Insight and Toyota Prius. HEVs are viewed by some automakers as a core segment of the future automotive market.Futurist magazine recently included hybrid electric vehicles as cars of the near future.
Posted by Ivak at 12:48 AM 0 comments