Fuel consumption
Current HEVs reduce petroleum consumption under certain circumstances, compared to otherwise similar conventional vehicles, primarily by using three mechanisms:
1. Reducing wasted energy during idle/low output, generally by turning the ICE off
2. Recapturing waste energy (i.e. regenerative braking)
3. Reducing the size and power of the ICE, and hence inefficiencies from under-utilization, by using the added power from the electric motor to compensate for the loss in peak power output from the smaller ICE.
Any combination of these three primary hybrid advantages may be used in different vehicles to realize different fuel usage, power, emissions, weight and cost profiles. The ICE in an HEV can be smaller, lighter, and more efficient than the one in a conventional vehicle, because the combustion engine can be sized for slightly above average power demand rather than peak power demand. The drive system in a vehicle is required to operate over a range of speed and power, but an ICE's highest efficiency is in a narrow range of operation, making conventional vehicles inefficient. On the contrary, in most HEV designs, the ICE operates closer to its range of highest efficiency more frequently. The power curve of electric motors is better suited to variable speeds and can provide substantially greater torque at low speeds compared with internal-combustion engines. The greater fuel economy of HEVs has implication for reduced petroleum consumption and vehicle air pollution emissions worldwide.
Noise
Reduced noise emissions resulting from substantial use of the electric motor at idling and low speeds, leading to roadway noise reduction,[33] in comparison to conventional gasoline or diesel powered engine vehicles, resulting in beneficial noise health effects (although road noise from tires and wind, the loudest noises at highway speeds from the interior of most vehicles, are not affected by the hybrid design alone).
Reduced noise may not be considered an advantage by some; for example, some people who are blind or visually-impaired consider the noise of combustion engines a helpful aid while crossing streets and feel quiet hybrids could pose an unexpected hazard.
Pollution
Reduced air pollution emissions, due to lower fuel consumption, lead improved human health with regard to respiratory problems and other illnesses. Pollution reduction in urban environments may be particularly significant due to elimination of idle-at-rest.
Battery toxicity is a concern, although today's hybrids use NiMH batteries, not the environmentally problematic rechargeable nickel cadmium. "Nickel metal hydride batteries are benign. They can be fully recycled," says Ron Cogan, editor of the Green Car Journal.[citation needed] Toyota and Honda say that they will recycle dead batteries and that disposal will pose no toxic hazards. Toyota puts a phone number on each battery, and they pay a $200 "bounty" for each battery to help ensure that it will be properly recycled.
Saturday, January 10, 2009
Environmental Impact
Posted by Ivak at 4:57 AM
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment